天才一秒记住【热天中文网】地址:https://www.rtzw.net
&
&herkindsofquantumlightthatprovidedifferentsortsofes.Recallthatlightisossoftheeleagicfield.Alaserbeammostnearlymimicsthisidealbehaviour.Yetevenithassome‘heamplitude.Thatis,eaeasurethefieldamplitude,yougetadifferehesituatioFigure36a,whieuyaboutthefieldateat,orphase,ofitsos.Thereisaparticulartypeofquantumlight—called‘squeezedlight’—forwhioisevarieswiththepointinthecycleofthefield,asshowniisbiggeratsomephasesthaurnsoutthatsuchafieldisposedofonlypairsofphotons.Ifyoumeasuretheons,youwillonlyeverfindanevehequantuminterferehesepairsistheinofthephase-depeudenoise.
&ainthingsyoudowithsuchastate.Imagiyouwaomakeameasurementofthephaseofthewave.(Recallthatthatiswhatyoudoier,andthephaseshiftissomethihelightbeambyayou’dliketomeasure,suchasthepresenceofaparticularmolecule.)Thephasebedeterminedmuchmorepreciselyatpointsiioheflusofthefieldaresmallest.Infact,theflusinthesqueezedlightfieldaresmalleratsomephasesthananyclassicalfield,sothatphasesenssuchafieldwillbemorepresensclassicalfields.Infacttheywillbreakthestandardquantumlimit.
Thisisacostlyapproasi,soitisohereisaclearadvaobehad—forihedeteofgravitywavesbymeanseoptiterferometers,suchastheGEO600projeearHanermany.Byusi,thisidetectphaseshiftsthatdtoarelativepathlengthgeofthelightequivalenttothesizeofanatomparedtothedistaheEarthtotheSun.
36.Squeezedlighta.hasreduoiseiudeatpointsinitsosparedthtb.
Quaa
ThirangerwhenweorethaumlightbeaPhotowinedinsuchawaythatitisimpossibletoascribeapropertytoeitherofthemindividually—forexample,acolour,positioion,orpulseshape.Thisgoeswellbeyondthefuioicleduality.Itgestheverynotionthatintheclassicalworlditispossibletoassignrealvaluesofpropertiestophysitities(e.g.ibeams,sayfrequendtimeofarrival,orH-andV-polarization)—inawaythatberevealedbyalocalmeasurementinaself-tfashiohatthisotbedonefhtbeamspreparediates,andbeprove,isoriumphsoffuithe20thtury.
&hisproperty,itispossibletousequantumopticstoexplorethefamousjectureofEinstein,BorisPodolsky,andNathanRosengwhetheraquantummeicaldesofasystemofpartibesideredplete,requiringnootherinformatioermihingaboutthesysteJohnBelldisthe1960sameanstoquantifysuchaquestioobuildauallytesthishypothesisbegaheseareknowncolloquiallyas‘Belltests’,aagworkusespairsofphotons,eachofwhichiscorrelatedwiththeother.Itisthehesecorrelationsthatissodifferentforquantumpartiforclassies.It’sworthexplthisinabitmoredepthiafullerserahisqua.
&ionsbefoundiuation.siderforihefollowingsimplegame.Adealertakestwopacksofewithgreenbadtheotherwithbluebacks.Thedealerpieeadgivesooyouaoyourpartner.Eachofyoulooksatyourcard.Theyalwayshavedifferenttheback,ofcourse,buttheymayhavethesamecolour(redorblathefront.Infact,you’dexpectthistooccurhalfthetime,sinceeachofyouwouldexpedividuallytogeteitherredorblackrobability(halfoftheeachdeckarebladhalfred).
Ifyouandyourparthateverytimeyoubothgotblack,you’dsaythatthecardswere‘correlated’.Thisisabacorrelationasyoue.Infact,ifyoubothgotthesameorethaime,you’dalsobeabletoclaimthecardswerecorrelated,thoughclearlythecorrelationswouldbe‘weaker’thainstahecorrelations,youcoulddetermihedealerwasg,sinightassumeshe’dstartwithtwoi,pletedecks.
Wemakeananalogyofthiskindofcorrelationforphotonsusingpolarizationinsteadofsuitforthecards.Thatis,ahorizontallypolarizedphotoermeda‘red’photoicallypolarizedphotona‘blae.Thenifasourceprodustwoatatime,asdescribedabove,yousaythatitproducescorrelatedphotoalrodusrescribedpolarizatioiehorizontal,orbothhorizontal.Thistypeofed‘classiceithasapleteanalogytothesituationwithclassicalobjectslikeplayingcards.
Thereisafeatureofcorrelationsthathasanintrinsitummeicalaspect.Let’ssaytherearetwopossiblestatesinwhichthephotonpairbeprepared—thefirstH-polarizedandthesedV-polarizedorviceversa.Intheclassicalworldthesetwosituationsfortwoparticlesaremutuallyexclusive:eitherHVorVHispossible,eachrobabilityofone-half.But,justasthesionasuperpositionHandV,sothepair:HVandVH,shownihisturnsouttobeamugercorrelationthanispossiblewithanyclassicalpartidistaisthemostenigmaticpropertyofquantumphysidhasextraordinaryces.
Thesearerevealedbymeas.Insuchatest,youhavetootonlythepossibilityofcorrelationsintheHandVpolarizatioicle,butalsothoseinthediagonal(D)andanti-diagonal(A)polarizations,eatedhalfwaybetweealaical.(Diagonallypht,forexample,isshownii-diagonalpolarizatiorightaheDdire.)Theanalogywiththecardsisthatyoulookatthefrontofthedobserveeitherred(equivalenttoH)orblack(equivalenttoV)suits.OryoucouldlookatthebadseegreetoD)orblue(equivalenttoA).
37.Alightseingpolarizatioons.
Aquantumgame
Nowimagineacardgameinwhichthedealereitherpadgivesooeachplayer.Thatmeansthateachplayerwillhaveacardthatcouldbeeitherred(R)orblathefront(F)ahergreen(g)orblue(b)ontheback(B).Thedealerchoosestohandoutsuchawaythatifoneplayerlooksatthefrontofhisdtheotherthebackofhers(F,B),thentheyheresult(R,b).Similarlyifthefirstplayerlooksatthebackofhisdtheotherthefrontofhers(B,F),thentheyheoute(b,R).However,whehlookatthefrontoftheircards(F,F)theysometimessee(R,R).Fromthis,youwouldcludelogicallythatinsuchacase,hadtheylookedatthefrontoftheircards(B,B)theywouldhaveseen(g,g).That’swhatenforobviouslyclassigslikecards.
38.Tableoftheprobabilitiesofpossibleoutesforaquantumcardgame.
Butinfayoutakephotons(orotherparticles)thatarequaedanddosuexperimeurnoutthatensisthatwhentheplayersmakemeasurementsofthepolarizationsusing,forthefirstplayer,ahorizontallyorientedpolarizer,and,forthesedplayer,adiagonallypolarizedphoton(orviceversa),theyheresults(V=0,D=1)and(D=1,V=0).Likewise,whehmeasureusingdiagoedpolarizers,theysometimesgettheresult(D=1,D=1).Thereforeyouwouldlogicludethatwhehephotonsusingahorizontallyorientedpolarizer,theywouldsometimesgettheresult(H=1,H=1).But,whehisexperiment,theyhisoute!ThetableofpossibleresultsofsutumcardgameareshowninFigure38.Suchexperimentsdhavebeen,doneusingphotonpairs.It’snotfi.
Localpropertiesofthings
Sowhatisgoingon?Thisisthefuallyweirdthingaboutquantumphysics:theofthequantumcardgameisthatthephotonsothavepredetermiheirpolarizatioheyarepreparedatthesource.Itisasifthecardsothavebeeesuitsfromadeckecifiedcard-backcoesagainstallintuitionaboutcards:theysurelyhavedefiiesofaspecifithefrontofeadaspecificthebaatteroreventhedealerknowswhatthesevaluesareordoubtthatthecardsactuallyhavethesepropertieswheous.Aainlydoahemgesthoseproperties.Butquaellsusthatweotassigncolourstothecardsapriori.
Itisthemeasurementsthatgivedefiheoutes.Wethemeasurementssimplyrevealpredetermiiesofthephotons,whiknowntotheplayers.Itisactuallythatyouotassigepolarizationstotheindividualphotoheyareproducedbythesoursuchawayastogivetheoutesthatareactuallyseen.Ifyoutrytodeviseawayofdealingcardsthatgivessucharesult,you’llfindthatitisimpossible.Thecardswouldohavethepossibilitythattheybesimultaneouslyiionsofredandblackreeicularways.Justsothephotons—itisnetobeiionsofHandVinawaythatgivesveryspecifictypesofcorrelations.Itisthistypeofcorrelationthatistermed‘quaa’.
&aisaveryweirdcept.Itisnotpossibletofindawaytothinkaboutitintermsofoneverydayobjects—astheplayingcardexamplewasioshow.Yeteisalsoveryon.Itappearsinmanythiumsineverydays:iioronsinmolecules,givioboomsmakingupthemolecule,oreveivelysmallatomsthemselves,aswellasexoticmaterialslikesuperductors.
Surprisiaurnsouttohaveteplis.You’dhardlythinkthatsuardabstractideacouldpossiblyhaveanyappli,butitdoes.Iteofinformatiapproachesthatotbereplicatedbysendingclassicalwavesbadforth.Iheveryideathatallinformatisystemsareatbottombuiltofsomethithedesignprihesemaesmustreflederlyingphysicsofthetparts—usuallyclassicalphysics.Thishasledtotheuandingthatbasingputing,unieasurementonquantummeicsprovidesueologiesthatsurpassthoseeioninunimaginableways:uniswhuarahelawsofersthatsolve‘unputable’problems;imagirevealaheyarenotevenlookingat.
Lightplaysanimportantpartiingsuchsystems.Theinfrastructureofopticalfibreworks,forinstanbeusedtodistributerandom‘quantumkeys’(randsof0sand1s)pletelysecurelybetweentwoparties,whitheoenessages.Suetworksalsobeusedtoall-stumprocessors,eventuallybeingadistributedquantumputer.Ihasbeenshoriispossibletobuildaquantumputerpletelyoutoflight,thoughitisextremelygtodoso.bieologiesholdsthepromiseiureofaqua,aradicallydifferentwaytounidproatioeologywetlyuse,andallenabledbylight.
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!