天才一秒记住【热天中文网】地址:https://www.rtzw.net
外表普普通通,形如花瓶的无相净瓶里面,怎么可能藏着茵纽瓶?
他一见之下,眼睛都直了。
数学领域有个重要分支叫拓扑学,主要研究几何图形连续改变形状时的特征和规律,内中最奇特的就是茵纽瓶,只是人类从未造出来过,只在虚构中想象,他不意现在却看到了。
茵纽瓶是不可定向的二维紧致流形闭曲平面,如二维平面,结构很简单,内外互绕成一体,表面无终结,但和杯子、气球等其他曲面物全然不同。
简单说,假设有个人能钻进瓶内,然后他一定会万分惊讶地发现,不论自己从什么地方穿过曲面,到达处依然在瓶外,竟然没边,无内外之分。
如果瓶颈不经瓶壁而从另一边和瓶底圈相连,则得到类似轮胎的环面。
环面和球面、斯比乌环带一样,也同样是不可定向的二维紧致流型。
恰因此不同,方显茵纽瓶之神奇。
仔细观察茵纽瓶的内部结构,有一点令人困惑不已:瓶颈内延和瓶身相交,使瓶颈上的某些点和瓶壁上的某些点,共同占据了三维空间的同一位置,显示二维三维都是它。
就是说,观察者在二维空间看到的相交处是平面,但在三维空间看到的却是立体。
不妨用扭结来打个比方。
把扭结看作是二维平面上的一条曲线,会发现它和自身相交,但在三维空间,它却利用第三维来回避这种相交,形成了一条连续不断的曲线。
茵纽瓶也一样。
不同的是,它的瓶颈不是穿过三维,而是穿过四维空间,也不是经由瓶壁和底洞连接,而是只有在四维空间才能完整地展现出来的一种曲面。
作为一种属于高维的四维物体,茵纽瓶不可能完整地嵌入三维空间,故人类只能看到它自我相交的三维假象。
用数学语言说,就是茵纽瓶在三维中的实现,是对三维空间的浸入。
帕弗洛经反复比较、分析后发现,斯比乌带完美地展现了二维空间中一维可无限扩展之空间模型,但四维的茵纽瓶却只能作为展现三维空间中,二维可无限扩展之空间模型的参考。
上述理想的三维空间中之二维无限模型,应该是在二维面中,朝任意方向前进都可回到原点的模型,但茵纽瓶虽在二维面上可向任意方向无限前进,却只在两个特定方向上才回到原点,且只在其中一个方向回到原点前,先经过一个逆向原点,而非所有方向皆如此。
这表明如要造出这样的理想模型,只有进入到四维空间对三维模型进行扭曲,才能够实现。
这发现把他吓住了,因为这说明存在于高维的文明,如神,可任意改变低维空间的形态。
有趣的是,如果把茵纽瓶沿对称线切下去,会得到两个斯比乌环。
而把两条斯比乌带沿它们唯一的边粘合起来,也能得到一个茵纽瓶,前提是在四维空间粘合。
也即是说,低维空间和高维空间可以互相转换。
高维不仅能任意扭曲、改变低维形态,高低维之间还能互相转换?
我的天!
他惊叫起来,脑子里唰地迸出个结论:果如此,那岂不是说低维的人和万物可被存在于高维空间的神文明任意创造、改变,甚至互相转换?
这……这还是我们认识的宇宙吗?
斯比乌带和茵纽瓶已如此神奇,那包含二者的无相净瓶又有多神奇呢?
无相净瓶的神奇处在哪里?
其内部有多个互相扭曲地连在一起的茵纽瓶,横切面则全是斯比乌带。
显然,它兼具斯比乌带和茵纽瓶的所有特性,有更高的维度空间,才能将二者包含其中,并经由特殊的角度映射出来,化作光影流转不息。
神奇的无相净瓶投射到墙壁上,本该显现出神奇来,但却只是一个二维平面的流动光影,除了光影自动来回流转,瞧着十分好看外,并无什么神奇效果显现出来,让人大失所望。
,
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!